Binary Classification Second Attempt
Summary
- Adjusting the linear model for non-linear problem
Content
Adjusting the linear model for non-linear problem
- In a binary classification problem, we can use
ReLU
for hidden layers, andsigmoid
for output layers
model = tf.keras.Sequential([
tf.keras.layers.Input(2),
tf.keras.layers.Dense(10, activation = 'relu'),
tf.keras.layers.Dense(10, activation = 'relu'),
tf.keras.layers.Dense(1, activation = 'sigmoid'),
])
model.compile(
loss = tf.keras.losses.BinaryCrossentropy(),
optimizer = tf.keras.optimizers.Adam(),
metrics = ['accuracy']
)
model.fit(X_train, y_train, epochs = 200, verbose=0)
![[Pasted image 20231227131315.png]]